

1

Lab 3 OpenGL I
CS123 Fall 2010

1 Introduction
From now on, our weekly labs will focus on the use of OpenGL. While the lec-

tures and projects will let you get a deeper understanding of the inner work-

ings of graphics, our labs will now focus on the more general use of OpenGL.

The culmination of these next 8 labs will leave you with a working knowledge

of OpenGL, which you may want to take advantage of in your final project.

This week we present an overview of some of the features OpenGL offers.

2 OpenGL Basics

2.1 The CPU and the GPU

The CPU is short for Core Processing Unit and the GPU is short for Graphics

Processing Unit. Traditionally, the CPU has been a mostly MIMD (Multiple In-

struction Multiple Data) architecture, whereas the GPU uses SIMD (Single In-

struction Multiple Data) instructions. GPUs incorporate hardware instructions

for vector operations (like dot products and matrix multiplication) that require

many instructions on traditional CPUs. GPUs offer specialized data primitives

(like vectors and matrices) as well. Although the boundaries between the CPU

and GPU are becoming blurry (Intel now offers certain SIMD instructions and

vector primitives on its latest processors), they are still significantly distinct

platforms which are most suitable for different applications.

Many graphics algorithms are embarrassingly parallel. For example, the lighting

equation (which we'll learn about in detail later in the semester) can be evalu-

ated independently on each pixel in a given image. Since GPUs are designed

with tens, hundreds, or even thousands of processing cores (known as stream

processors), they tend to work really well for computer graphics applications.

There are many competing GPU programming APIs, such as OpenGL and Di-

rectX, as well as hardware vendor-specific APIs such as NVIDIA's CUDA. This

semester, we'll be focusing on OpenGL, because we believe it offers the best

cross-platform and cross-hardware functionality available today.

2.2 The Rendering Pipeline

OpenGL has what we call a rendering pipeline: a systematic series of steps

which are performed on vertex and pixel data. There are various buffers to

store data at each step in the pipeline. A diagram of OpenGL’s rendering pipe-

line is shown in Figure 1.

Figure 1. OpenGL's rendering pipeline

We'll learn about the pieces of this pipeline as the class progresses. For now,

just be aware that the pipeline exists. The pipeline covers much of OpenGL's

high-level architecture.

2.3 Basic Syntax of OpenGL commands

Most OpenGL commands are defined in the <GL/gl.h> header file. OpenGL

commands adhere to the C standard (not the C++ standard). You will notice

that many of them take pointers, and none of them accept references. OpenGL

does not offer classes or inheritance. Although wrappers like GLT exist, we will

not be using them as they add unnecessary overhead. An OpenGL command is

usually surrounded by a prefix and a suffix, which explain part of how the

method works.

Prefix Everything with begins with gl, as you may have noticed. We also use glu

when using the GLU library commands (more on these later).

Vertex
data

Pixel data

Display list

Evaluators Per-vertex
operations and

primitive

assembly

Rasterization

Pixel operations
Texture

assembly

Per-fragment
operations

Framebuffer

2

Suffix A number and a letter. The number represents how many arguments the

method takes in. The letter represents the type of the arguments.

For example, glVertex3f is an OpenGL command that takes in three floating

point arguments.

3 OpenGL as a state machine
OpenGL is a state machine. States are set by the user before drawing a scene.

The resulting rendering reflects these changes in state.

Two important states are GL_PROJECTION and GL_MODELVIEW, which enable

editing of the projection or modelview matrices. The projection matrix defines

how the camera's view volume has been transformed. The modelview matrix

defines how the camera and objects have been rotated, scaled or translated in

the scene. Every time a vertex is drawn in the scene, its final location in the

scene reflects the transformations currently represented by the modelview

matrix. The way these vertices get projected to the screen depends on the cur-

rent projection matrix. Thus, before we draw any vertices we should be in

GL_MODELVIEW mode. Before we modify the camera we should be in

GL_PROJECTION mode. We can change the mode between GL_MODELVIEW and

GL_PROJECTION with a call to glMatrixMode. You don't need to worry too much

about the projection matrix and view volumes in detail yet; we'll discuss these

in class.

There are also binary states such as DEPTH_TEST, LIGHT# and

GL_LINE/POINT/FILL that can be turned on and off, typically with the use of

glDisable and glEnable.

There are also settings that have multiple options. One example of such a set-

ting is the shading model, for which you can specify an option to set as a pa-

rameter (i.e glStateOption(GL_ANY_OPTION)). We will go over these and a few

others throughout the course of this lab.

4 Buffers in OpenGL
OpenGL stores information about a scene in buffers, each of which contains a

rectangular array of data. The size of the rectangular array is the same size as

the image to be displayed. The buffers available to you in OpenGL include the

color buffer, depth buffer and frame buffer.

Color Buffer The color buffer stores the color at each of the pixels in the scene.

Depth Buffer A scene is composed of objects that get rendered to the screen.

Each of these objects has a certain magnitude of depth in the scene. The

depth buffer keeps track of what the smallest depth is in a scene for every

pixel. This is used to know which objects should or shouldn't be rendered

based on which obscures/occludes which.

Frame Buffer The frame buffer is composed of all other buffers (such as the

depth buffer), except for the color buffer. All of the buffers included in the

frame buffer represent non-visual information about the scene and they can

be used to perform tasks such as hidden surface elimination, antialiasing,

stenciling, drawing smooth motion.

You should probably clear your buffer between frames by calling glClear. If you

don't clear a buffer before rendering a frame, any information from the previ-

ous frame that is not overwritten will be preserved.

Tip: You can use glClear to clear multiple buffers at once by using the bitwise

Suffix Data type Corresponding C++ type OpenGL type definition

b 8-bit integer signed char GLbyte

s 16-bit integer short GLshort

i 32-bit integer int or long GLint, GLsizei

f 32-bit floating-point float GLfloat, GLclampf

d 64-bit floating-point double GLdouble, GLclampd

ub 8-bit unsigned integer unsigned char GLubyte, GLboolean

us 16-bit unsigned integer unsigned short GLushort

ui 32-bit unsigned integer unsigned int or unsigned long GLuint, GLenum, GLbitfield

http://www.opengl.org/sdk/docs/man/xhtml/glMatrixMode.xml

3

OR operator to combine the bit masks. For example,

glClear(DEPTH_BUFFER_BIT | COLOR_BUFFER_BIT) will clear both the depth

buffer and the color buffer at once.

There are also methods to set the clear values, which are the default values that

OpenGL will use when you call glClear. For example, if you use glClearCol-

or(red, green, blue) you can specify what the default color of all the pixels will

be when the color buffer is cleared.

5 Support Libraries
OpenGL is powerful, but it is also a low-level language. There are higher level

libraries that use OpenGL's capabilities to make OpenGL's capabilities easier to

use. Examples of these libraries include GLX, GLUT, and GLU. Other graphics

platforms have their own support libraries as well.

Although we will make use of support libraries during lab, you may not use

them in your cs123 projects (except for the final project).

6 Useful References
Some useful resources can be found through the cs123 web site. The Blue

Book, which you will find to be extremely useful, provides documentation of GL

and GLU methods that you will need for this lab.

7 Let's Get Started

7.1 Setting Up

We recommend you use Qt Creator to do this lab, which you can access by run-

ning /course/cs123/bin/qtcreator.

The support code for lab 3 is built into the main support code tree. Use git pull

to get the latest version of the support code. Resolve any conflicts and use git

add to commit your fixed files to your local repository. Finally, use git commit to

save everything. If you type git pull again, you should see a message like "Eve-

rything is up-to-date."

• In general, anything that won't be changed between frames will be put in the

initializeGL method, which is called once when the application is started.

• Features of the scene that lend themselves to be modified from frame to frame

(camera specifications and vertex/object drawing and transforming) should be

put in the paintGL method, which will be called every time OpenGL draws a

frame.

• The updateCamera method will be called when the window is resized or the

camera is changed.

• The applyRenderSettings method will be called when you need to change render

settings, such as after a user selection or a change in environment.

7.2 Make a Sphere

Let's start by creating a sphere. For basic shapes like spheres, GLU can help.

Simply call gluSphere to draw a sphere. There are certain parameters you can

specify; take a look at the blue book for these. Once you have filled in your pa-

rameters to a reasonable extent, run your program. (For the GLUquadric, use

the provided m_quadric).

Whenever you draw a shape make sure you're in GL_MODELVIEW mode. You

can call glLoadIdentity to reset your current matrix to the identity matrix. By

loading the identity matrix, you clear out any old transformations that might

already be in the buffer.

7.3 The Camera

By default, the camera is located at the origin. Thus, you’re actually viewing the

inside of the sphere. Notice that gluSphere tessellates both the inside and out-

side of the sphere. When you tessellate your own sphere in the Shapes assign-

ment, you'll only draw one side of each triangle so only the outside of each

shape will be visible.

We need to translate the camera and then rotate it to look at the origin where

our sphere is. A good place to do all of this in the updateCamera method.

First, we will set up a perspective view volume. Call gluPerspective, specifying

the camera parameters that can be found in the m_camera member variable.

Don't worry too much about what this function does, as you’ll be implementing

the transformations yourself in the Camtrans assignment.

Once you have set up the projection matric with gluPerspective, you can trans-

form the camera. GLU has a nice method called gluLookAt that will point your

http://www.opengl.org/sdk/docs/man3/xhtml/glClear.xml
http://www.opengl.org/sdk/docs/man/xhtml/glClearColor.xml
http://www.opengl.org/sdk/docs/man/xhtml/glClearColor.xml
http://www.opengl.org/sdk/docs/man/xhtml/gluSphere.xml
http://www.opengl.org/sdk/docs/man/xhtml/glLoadIdentity.xml

4

camera in a specified direction, making your camera “look towards” a point.

This method takes in several parameters; again, use the corresponding values

stored in the provided m_camera member variable. You’ll be implementing this

function in Camtrans as well, so enjoy the magic for now

Note: Make sure that you are in the right matrix mode and that you load the

identity matrix before calling the gluLookAt and gluPerspective functions. Both

of these functions modify the current OpenGL matrix. If you update the wrong

matrix, you won’t get an error, but you might get incorrect results.

Although we say we are changing the position and orientation of the object,

OpenGL’s internal camera is always situated at (0,0,0), facing down the negative

z axis. It is the position of the objects that change that make it seem that the

camera is in a different position and orientation. Hence, we group the camera

transformations with the modelview matrix.

7.4 Line, Fill and Point

There are three different modes we can view our shapes in: wireframe, solid

and vertices only. These modes are represented by GL_LINE, GL_FILL and

GL_POINT, respectively. We have included buttons for you that allow you to

choose between the three. You will need to fill in the methods for each of these

buttons. Fill in the appropriate part of the applyRenderSettings method and

call it in the correct place. Play around with each of the views. Switch to

GL_FILL mode for the next part of the lab.

7.5 Color

Hopefully at this point you can see the sphere in its entirety. Right now it’s

white; let's change that. Before we draw the sphere we can specify the color of

the object. Every vertex will be given that color. We can do this using glCol-

or3f(red,green,blue) before our gluSphere call. Use the values in the local vari-

able m_color (or choose your own color) and color in your sphere.

Note: If you use the glColor3f, color values range between 0 and 1. Pure blue

would be glColor3f(0,0,1). If we used glColor3i(r,g,b) instead, the values range

from 0 to 255.

Each triangle in OpenGL is shaded (colored in) based on the colors at each of

the vertices that compose it. In our case, since we are specifying every vertex to

be the same color, every triangle should be shaded in with that color. If the ver-

tices were different colors, OpenGL would perform interpolation automatically.

7.6 Lighting

You should now see a nice colored sphere. But there is another problem: it

looks more like a circle than it does a sphere! That's because everything is the

same color. Without any interaction with lighting there’s no way to perceive

the 3-dimensionality of the shape. To fix this problem, we need to turn on the

lights!

The first thing to do is enable OpenGL’s lighting capability. Enable

GL_LIGHTING and fill in the appropriate part of the applyRenderSettings meth-

od now. OpenGL can support up to eight lights in a scene. Each light corre-

sponds to a constant {LIGHT0, LIGHT1, LIGHT2, LIGHT3, etc.}. We can turn on

any number of these lights and then reposition them or define their lighting

characteristics.

For now just enable LIGHT0. Looks more 3-dimensional now, doesn't it? The

lighting is interacting with the vertices and their positions on the sphere. While

we won't go into how exactly this works just yet, the end result is that parts of

the sphere facing the light are brighter than parts that are facing away from the

light. Thus, we perceive the shape as 3-dimensional.

7.7 Shading

Looks sort of blocky, doesn't it? That's because we're using flat shading right

now. Recall that the shading of each triangle depends on color of the vertices

that compose it.

Self-test: Recall our discussion in lecture about shared vs. repeated vertices.

What is the major difference between the two vertex specifications? What type

of vertex specification do you think GLU is using? Why?

Right now we are using a shading mode called flat shading (GL_FLAT). This

mode defines that each triangle1 will be of constant color with no transitioning

between vertices. The resulting object looks blocky and not very smooth. So

how do we make it look smooth? Use GL_SMOOTH!

1 You may have noticed that gluSphere actually uses rectangles as its basic unit
(instead of triangles) but we explain concepts in terms of triangles as they are
more widely used.

5

Fill in the applyRender settings method to support viewing your sphere in ei-

ther GL_FLAT or GL_SMOOTH mode. You may use the OpenGL documentation

to help you figure out how to accomplish this task.

7.8 More Shapes

Using GLU, make a cylinder with radius 0.5 and height 2. Draw it before you

draw the sphere. Notice that the sphere will be obstructing the cylinder. That’s

because by default, OpenGL paints its shapes on top of shapes rendered first,

similar to how your paint strokes in Brush are drawn on top of existing strokes.

We can fix this default behavior by enabling depth testing (GL_DEPTH_TEST) in

OpenGL. Do it. Now what gets rendered to the screen will be determined by the

actual depth/distance of the object relative to the camera.

7.9 A Glance at Transformations

Both objects are at (0,0,0) right now, so they intersect each other. Let's separate

them. We need to call glTranslatef(x,y,z) to specify another translation. Note

that the modelview matrix affects every vertex drawn, which means we will

end up translating all future objects (like the sphere) as well! Thus, we have

two options.

1. Completely re-specify the transformations for each object just before each

object is drawn to the screen

2. Save the transformation matrix before we do the translation, and then re-

store it when we’re done with it

OpenGL provides two functions: glPushMatrix and glPopMatrix. There are four

basic steps we need to follow to use these:

1. Calling glPushMatrix puts a copy of your original modelview matrix on top

of a stack (separate from your application’s execution stack)

2. Modify your matrix using the glTranslatef method to modify the current

matrix.

3. Draw your object.

4. Call glPopMatrix to get rid of the matrix at the top of the stack and revert

your current matrix back to the original.

Try translating your cylinder to (3,0,0), using the glPushMatrix and glPopMatrix

functions.

8 Final Thoughts
When you're finished, show a TA your program to get checked off. If you have

time you can play around with OpenGL’s triangle fan and triangle strip con-

structs. These can be used to actually tessellate shapes of your own, which you

will be doing in Shapes. There are also a number of ways you can tessellate

shapes including immediate mode, using vertex arrays. You can also make tes-

sellating more efficient by using display lists and indexing arrays. As you will

learn this semester, efficiency is key in graphics, and optimizing can be a lot of

fun!

© 2010 Ben Herila and Roger Fong,

released under the Creative Commons Share-Alike 3.0 Unported License.

DirectX is a registered trademark of Microsoft Corporation. OpenGL is a regis-

tered trademark of SGI, and other registered trademarks are the properties of

their respective owners.

http://creativecommons.org/licenses/by-sa/3.0/

